SOME L2 RESULTS FOR ∂ ON PROJECTIVE VARIETIES WITH GENERAL SINGULARITIES By NILS ØVRELID and SOPHIA VASSILIADOU
نویسنده
چکیده
Let X be an irreducible n-dimensional projective variety in CPN with arbitrary singular locus. We prove that the L2-∂-(p, 1)-cohomology groups (with respect to the Fubini-Study metric) of the regular part of X are finite dimensional.
منابع مشابه
Rings of Singularities
This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...
متن کاملOn the L–Stokes theorem and Hodge theory for singular algebraic varieties
We discuss aspects of the L–Stokes theorem on certain manifolds with singularities. We show that the L–Stokes theorem does not hold on real projective varietes, even for isolated singularities. For a complex projective variety of complex dimension n, with isolated singularities, we show that the Laplacians of the de Rham and Dolbeault complexes are discrete operators except possibly in degrees ...
متن کاملCharacterizing Projective Spaces for Varieties with at Most Quotient Singularities
We generalize the well-known numerical criterion for projective spaces by Cho, Miyaoka and Shepherd-Barron to varieties with at worst quotient singularities. Let X be a normal projective variety of dimension n ≥ 3 with at most quotient singularities. Our result asserts that if C · (−KX) ≥ n + 1 for every curve C ⊂ X, then X ∼= P .
متن کاملFunctional Equations of Iterated Integrals with Regular Singularities
Polylogarithms are special cases of more general iterated integrals. One can hope that the known results about functional equations of polylogarithms hold also for more general iterated integrals. In fact in [5] we have proved some general results about functional equations of iterated integrals on P ( ) minus several points. In this paper we generalize our results from [5] to functional equati...
متن کاملFano Hypersurfaces in Weighted Projective 4-Spaces
A Fano variety is a projective variety whose anticanonical class is ample. A 2–dimensional Fano variety is called a Del Pezzo surface. In higher dimensions, attention originally centered on smooth Fano 3–folds, but singular Fano varieties are also of considerable interest in connection with the minimal model program. The existence of Kähler–Einstein metrics on Fano varieties has also been explo...
متن کامل